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Abstract
We use the Whittaker–Shannon sampling theorem to show that the eigenvalue
problem for the sinc-kernel is equivalent to a discrete eigenvalue problem. The
well-known eigenfunctions, namely, the prolate spheroidal wavefunctions, their
corresponding eigenvalues and the orthogonality and completeness properties
are determined without invoking the prolate spheroidal differential equation.
This analysis based on the sampling theorem may be used for calculating
the eigenvalues and eigenfunctions of bandlimited kernels in general as we
illustrate with an additional example of the sinc2-kernel.

PACS numbers: 02.30.Gp, 02.30.Nw, 02.30.Rz, 02.30.Zz, 02.60.Cb, 02.60.Ed

1. Introduction

Prolate spheroidal wavefunctions of order zero form a complete set of bandlimited functions
that are orthogonal over a finite as well as infinite interval. They are eigenfunctions of the
finite Fourier transform and also that of the sinc-kernel. The spheroidal wavefunctions are
the solutions of the wave equation in spheroidal co-ordinate system [1, 2]. In a series of
papers, Slepian et al [3–7] extensively investigated the properties of the prolate spheroidal
functions and their relation to the uncertainty principle. These functions have found several
applications, notably in the theory of laser resonators [8, 9]. Frieden [10] has reviewed the
evaluation, design and extrapolation methods for optical signals using prolate functions. These
functions also find important applications in the generalized information theory for inverse
problems in signal processing [11].

The purpose of this paper is to present a novel approach, based on the Whittaker–Shannon
sampling theorem, to the eigenvalue problem for the sinc-kernel. Our analysis also presents
an insight into the fact that the number of significant eigenvalues for the sinc-kernel problem is
of the order of the space-bandwidth product or the Shannon number of the system. As pointed
out by the reviewers, the present work has some similarities with the recent publications of
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Walter and Shen [12–14]. In their work, Walter and Shen have used the natural connection
between the prolate spheroids and the sinc function to develop several new formulae that are
further used to construct filter banks for digitized/sampled versions of bandlimited signals.
Our goal in this paper is show that the eigenfunctions for the sinc-kernel, the corresponding
eigenvalues and their orthogonality and completeness properties may be determined using
the sampling theorem and some related identities, with no reference to the prolate spheroidal
differential equation. We also wish to emphasize that the approach presented here is useful for
treating the eigenvalue problems associated with general bandlimited kernels. To that effect,
an additional illustration of our method for the sinc2-kernel is provided.

The outline of the paper is as follows. In section 2, we briefly state the Whittaker–Shannon
sampling theorem and some related identities, which will be found useful in later sections.
The eigenvalue problem for the sinc-kernel is treated with our new sampling theorem based
method in section 3. In section 4, we derive the orthogonality and completeness properties of
the eigensolutions. Finally in sections 5 and 6, we present some numerical results obtained
using the method described in earlier sections. The eigenvalues and eigenfunctions are
computed for both the sinc- and the sinc2-kernels.

2. Whittaker–Shannon sampling theorem

Consider a bandlimited function g(x) in L2(−∞,∞) such that its Fourier transform G(f ) is
non-zero only in the interval [−B,B] in the frequency domain. Then the sampling theorem
[15, 16] allows us to express g(x) in terms of its equally spaced samples as follows:

g(x) =
∞∑

m=−∞
g

( m

2B

)
sinc(2Bx − m) (1)

where

sinc(x) = sin πx

πx
. (2)

The sinc functions obey the following orthogonality relation:∫ ∞

−∞
dx sinc(2Bx − m) sinc(2Bx − n) = 1

2B
δm,n (3)

where δm,n is the Kronecker delta which is zero for m �= n and equals 1 for m = n. As a
special case of (1), we take g(x) to be the bandlimited function sinc[2B(x − x ′)] and write

∞∑
m=−∞

sinc(2Bx − m) sinc(2Bx ′ − m) = sinc[2B(x − x ′)]. (4)

The properties (3) and (4) show that the sinc functions centred at m/(2B) for integral values of
m form an orthogonal and complete set over (−∞,∞) for the class of functions bandlimited
to [−B,B]. Using (3), we find

g
( m

2B

)
= 2B

∫ ∞

−∞
dx g(x) sinc(2Bx − m) (5)

and ∫ ∞

−∞
dx g2(x) = 1

2B

∞∑
m=−∞

g2
( m

2B

)
. (6)

All the above properties may be proved by straightforward calculations and we have stated
them here since they will be needed in the following sections.
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3. The eigenvalue problem for the sinc-kernel

Consider a one-dimensional imaging system, which passes all the spatial frequencies only in
the range [−B,B] with equal weight. When an object O(x) in [−L,L] is imaged using this
system, the resultant field distribution I (x) in the image plane is described by

I (x) =
∫ B

−B

df ei2πf x

∫ L

−L

dx ′ e−i2πf x ′
O(x ′)

= 2B

∫ L

−L

dx ′ sinc[2B(x − x ′)]O(x ′). (7)

The inversion problem of reconstructing O(x) from I (x) has been well studied in the literature
in terms of the orthogonal set of eigenfunctions for the sinc-kernel [17]. These eigenfunctions
happen to be the prolate spheroidal wavefunctions. The imaging situation described above,
however, has no obvious connection with the prolate spheroidal differential equation satisfied
by the eigenfunctions. In view of this, it is our aim in this paper to show that it is possible
to arrive at the eigenfunctions of the sinc-kernel in an alternative way. The method presented
below is direct (non-iterative) and is based on the sampling identities stated in section 2.

We start by considering the following problem:

λnφn(x) =
∫ L

−L

dx ′ sinc[2B(x − x ′)]φn(x
′). (8)

The above equation is a homogeneous Fredholm integral equation of the second kind with
φn(x) and λn being the eigenfunctions and the associated eigenvalues, respectively. The
kernel of the equation is symmetric and square integrable. The properties of eigenfunctions
associated with symmetric kernels [18] will not be used for the purpose of the present section
where we convert equation (8) to an equivalent discrete eigenvalue problem.

Using (4) we expand sinc[2B(x − x ′)] in (8) as a sampling series to get

λnφn(x) =
∫ L

−L

dx ′
∞∑

m=−∞
sinc(2Bx − m) sinc(2Bx ′ − m)φn(x

′)

=
∞∑

m=−∞
λnφn

( m

2B

)
sinc(2Bx − m). (9)

The second step above follows from the integral equation (8). From (9), it is clear that the
eigenfunctions φn(x) satisfy the sampling theorem (1) and hence are bandlimited to [−B,B].
Starting from:

λnφn

( m

2B

)
=

∫ L

−L

dx ′ sinc
[
2B

( m

2B
− x ′

)]
φn(x

′) (10)

we now expand φn(x
′) as a sampling series to obtain

λnφn

( m

2B

)
=

∫ L

−L

dx ′ sinc(2Bx ′ − m)

∞∑
k=−∞

φn

(
k

2B

)
sinc(2Bx ′ − k)

=
∞∑

k=−∞
Amkφn

(
k

2B

)
(11)

where

Amk =
∫ L

−L

dx ′ sinc(2Bx ′ − m) sinc(2Bx ′ − k). (12)
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The integral equation (8) is thus equivalent to the discrete eigenvalue problem for the
infinite matrix A. We point out that if we were to replace the sinc-kernel in (8) by a general
bandlimited kernel h(x − x ′) that may be expressed as a sampling series, the conclusion
regarding the bandlimited nature of the eigenfunctions will still hold and it is also possible to
formulate the discrete eigenvalue problem as in equations (10)–(12). Note that the eigenvalues
of equation (8) are the same as that of the matrix A, and the elements of the corresponding
discrete eigenvectors are the samples of the continuous eigenfunctions φn(x). The continuous
eigenfunctions φn(x) can thus be determined from the discrete eigenvectors of A by using
the sampling theorem as in (1). The knowledge of the fact that the solutions of (8) happen
to be the prolate spheroidal functions is therefore not necessary for the computation of the
eigenvalues and the eigenfunctions. Our study of the literature shows that the computation of
prolate spheroids and their eigenvalues is performed using either asymptotic solutions of the
prolate spheroidal differential equation [19–22] or Bouwkamp’s method of Legendre series
[23, 24]. Both these methods rely on the use of the prolate spheroidal differential equation.
The sampling theory approach presented above thus provides an interesting alternative to the
computation of prolate spheroids. From (12) we see that the matrix elements Amk fall off to
zero as the main lobes of the corresponding sinc-functions go beyond the range of integration
[−L,L], i.e. when |m|, |k| > 2BL. Clearly, only a square sub-matrix of A with the dimension
of the order of the space-bandwidth product (4BL) has elements with significant magnitude,
so that, when calculating the eigenvalues by equating determinant(A − λI) to zero, it is clear
that the number of significant eigenvalues for the sinc-kernel is at most of the order of (4BL),
the remaining eigenvalues being close to zero. This property has important implications in the
solution of inverse problems (see, for example, [11]). Later in section 5 we will compare
the trace of the matrix A with the sum of highest c ∼ (4BL) (Shannon number) calculated
eigenvalues to illustrate this point. A much more quantitative analysis of the number of
significant eigenvalues is presented in [5, 14].

4. Orthogonality and completeness properties of the eigenfunctions

The orthogonality and completeness properties of the prolate spheroids are well known and
have been treated in detail before [3]. However, in the spirit of this paper we take a different
route to proving them, once again by means of the sampling identities stated in section 2. We
note that the proofs of orthogonality and completeness properties given below are specific to
the sinc-kernel problem. For brevity, we denote the discrete eigenvectors of the matrix A by
un = [

. . . φn

(
m
2B

)
. . .

]T
, with T standing for the transpose of the row vector. The matrix A

in (12) is real symmetric, so that its eigenvalues and eigenvectors must be real. Clearly, the
eigenfunctions φn(x) obtained from the elements of un using the sampling theorem are also
real. Note that the matrix A is also centrosymmetric with respect to the element A00. It is
known that the eigenvectors of symmetric centrosymmetric matrices are either symmetric or
skew symmetric [25]. The corresponding continuous eigenfunctions φn(x) are therefore either
even or odd. We assume the eigenfunctions φn(x) to be normalized to 1 over (−∞,∞):∫ ∞

−∞
dx φ2

n(x) = 1 = 1

2B

∞∑
m=−∞

φ2
n

( m

2B

)
. (13)

The second equality above follows from (6) since φn(x) is bandlimited. The real symmetric
nature of A assures that the matrix A may be factored in form A = UAdU

T such that Ad is a
diagonal matrix with U obeying:

UT U = 2B
∧
1 = UUT . (14)
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The columns of U are formed by the eigenvectors un. The factor 2B above occurs due to
the choice of normalization in (13). The non-degeneracy of eigenvalues for the sinc-kernel is
known [3] and this fact along with the nature of A once again confirms (14). Equation (14)
may be written explicitly in terms of the samples of eigenfunctions as follows:

∞∑
m=−∞

φn

( m

2B

)
φl

( m

2B

)
= 2Bδn,l (15)

and
∞∑

n=0

φn

( m

2B

)
φn

(
k

2B

)
= 2Bδm,k. (16)

Equations (15) and (16) above are simply the restatements of the first and the second equalities
in (14), respectively. Walter and Shen have obtained equations (15) and (16) in their recent
publications [12–14] using the well-known properties of prolate spheroids. Here, we have
arrived at these relations independently as a consequence of the real symmetric nature of
the matrixA defined in (12). We now proceed to prove the orthogonality and completeness
properties of the eigensolutions.

4.1. Orthogonality and completeness over the bandlimited subspace of L2(−∞,∞)

Using the sampling theorem (1) and the orthogonality condition (3), we can write∫ ∞

−∞
dx φn(x)φl(x) =

∞∑
m=−∞

∞∑
k=−∞

φn

( m

2B

)
φl

(
k

2B

)
1

2B
δm,k

= 1

2B

∞∑
m=−∞

φn

( m

2B

)
φl

( m

2B

)
= δn,l . (17)

The last step in (17) follows from (15). The orthogonality of the discrete eigenvectors is
thus equivalent to the orthogonality of the continuous eigenfunctions over (−∞,∞). Now
consider

∞∑
n=0

φn(x)φn(x
′) =

∞∑
m=−∞

∞∑
k=−∞

[ ∞∑
n=0

φn

( m

2B

)
φn

(
k

2B

)]
sinc(2Bx − m) sinc(2Bx ′ − k).

(18)

The sum over index n is simplified by (16) and additionally using (4) we get
∞∑

n=0

φn(x)φn(x
′) = 2B sinc[2B(x − x ′)]. (19)

The above equation is just a restatement of the Mercer’s theorem [18] with normalization
of eigenfunctions as defined in (13). For an arbitrary function g(x) that is bandlimited to
[−B,B], we therefore have∫ ∞

−∞
dx g(x)

∞∑
n=0

φn(x)φn(x
′) = g(x ′). (20)

Thus, completeness of the eigensolutions over the class of functions in L2(−∞,∞)

bandlimited to [−B,B] is proved since an arbitrary bandlimited function g(x) of this class
may be represented as a linear combination of eigenfunctions φn(x).
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4.2. Orthogonality and completeness over L2(−L,L)

The dual orthogonality over infinite as well as finite intervals is a special property of the
eigensolutions. It is well known that the eigenfunctions of a symmetric kernel associated with
distinct eigenvalues are orthogonal over the range of integration (−L,L). Nevertheless, we
prove this property below using sampling identities. Consider:∫ L

−L

dx φn(x)φl(x) =
∞∑

m=−∞
φn

( m

2B

) ∫ L

−L

dx sinc(2Bx − m)φl(x)

= λl

∞∑
m=−∞

φn

( m

2B

)
φl

( m

2B

)
= 2Bλlδn,l . (21)

To prove completeness over L2(−L,L) we start by writing equation (8) as

2Bλnφn(x) =
∫ L

−L

dx ′ φn(x
′)

∫ B

−B

df ′ ei2πf ′(x−x ′). (22)

Denoting the finite Fourier transform of φn(x) by

�n(f ) =
∫ L

−L

dx φn(x) e−i2πf x (23)

and using (22), we see that the finite Fourier transform satisfies:

B

L
λn�n(f ) =

∫ B

−B

df ′ �n(f
′) sinc[2L(f − f ′)]. (24)

Equation (24) above is simply a scaled version of equation (8) and we thus conclude that

�n(f ) =
∫ L

−L

dx φn(x) e−i2πf x = αnφn

(
Lf

B

)
. (25)

Here, αn is a constant for the particular φn(x)under consideration. The factor (L/B) in the
argument of the last term above adjusts the scaling appropriately. It may be shown that
αn = in(2Lλn)

1/2, however, this value is of no consequence in what follows.
Using (25) and the identity (19), we observe that∫ L

−L

dx e−i2πf x

∞∑
n=0

1

αn

φn(x)φn

(
Lf ′

B

)
= 2B sinc[2L(f − f ′)]. (26)

This result suggests the expansion:

L

B

∞∑
n=0

1

αn

φn(x)φn

(
Lf ′

B

)
= exp(i2πf ′x) |x| < L. (27)

This result has also been obtained in [24]. We now note that any function p(x) in L2(−L,L)

may be expressed as a Fourier expansion:

p(x) =
∫ ∞

−∞
df P (f ) ei2πf x (28)

and in view of (27) can thus be expressed as a linear combination of φn(x). The completeness
in L2(−L,L) is thus proved. It is interesting to note that, the occurrence of the sinc-function
as the kernel of the integral equation as well as the interpolation function in the sampling
formula plays an important role in the orthogonality and completeness proofs above. This
offers an explanation to the fact that among the functions bandlimited to [−B,B], only the
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Table 1. Ten largest eigenvalues for the sinc-kernel calculated using the sampling theorem based
method for c = 10. The calculations are performed with the dimension N of the truncated matrix A

taken equal to 51, 201 and 501, respectively. For maintaining consistency with the literature [19],
values of (2Bλn)are given in the table below.

n N = 51 N = 201 N = 501

0 1.0000 × 10000 1.0000 × 10000 1.0000 × 10000

1 1.0000 × 10000 1.0000 × 10000 1.0000 × 10000a

2 9.9989 × 10−001 9.9989 × 10−001 9.9989 × 10−001

3 9.9767 × 10−001 9.9784 × 10−001 9.9788 × 10−001

4 9.7444 × 10−001 9.7446 × 10−001 9.7446 × 10−001

5 8.1176 × 10−001 8.2173 × 10−001 8.2377 × 10−001

6 4.4015 × 10−001 4.4015 × 10−001 4.4015 × 10−001

7 1.0194 × 10−001 1.0973 × 10−001 1.1129 × 10−001

8 1.4903 × 10−002 1.4920 × 10−002 1.4920 × 10−002

9 1.1073 × 10−003 1.2655 × 10−003 1.2952 × 10−003

a The eigenvalues corresponding to n = 0, 1 are not degenerate. Our calculations show that they
differ in sixth significant digit. All the eigenvalues are less than one.

prolate spheroids enjoy the curious dual orthogonality property over finite as well as infinite
intervals [3, 10]. We conclude this section by calculating the trace of the matrix A, which
equals the total sum of its eigenvalues.

tr(A) =
∫ L

−L

dx

∞∑
m=−∞

sinc2(2Bx − m) = 2L. (29)

We have used the special case x = x ′ of the identity (4) for evaluation of the summation above.

5. Numerical computation of eigenfunctions and eigenvalues for the sinc-kernel

In this section, we illustrate the sampling theorem based method presented in section 3
for computation of the eigenfunctions. The Shannon number c in the literature on prolate
spheroids [3] in our notation equals 2πBL. We choose L = 1 and determine the eigenvalues
and eigenfunctions for the special case c = 10. The reason for choosing this particular value
of c is that, in the literature [1, 10, 21, 22], different asymptotic expansions are suggested for
calculating the spheroidal functions depending on whether c < 10 or c > 10. Our method
explained before is independent of the magnitude of c, apart from requiring the dimension of
the truncated version of matrix A to be sufficiently larger than c. The matrix elements Amk

defined in (12) were first calculated by numerical integration using Gaussian quadrature (with
the tolerance set to 10−10) and the eigenvalue problem Aun = λnun was solved for a truncated
version of the matrix A. The eigenvectors thus obtained were then interpolated with sinc-
function according to the sampling theorem (1). We have calculated the first ten eigenvalues
for truncated versions of matrix A with dimension N = 51, 101, 151, 201, . . . , 501. In table 1,
we show the ten largest eigenvalues for the cases N = 51, 201, 501, respectively. We observe
that for N = 151 and beyond, the eigenvalues corresponding to the even orders have stabilized
up to five significant digits and match with those obtained by Slepian and Sonneblick [19]
using asymptotic expansions. The eigenvalues corresponding to the odd orders barring n = 1,
on the other hand, have kept increasing progressively in third or fourth significant digit. For
N = 501, the eigenvalues corresponding to orders n = 3, 5, 7, 9 match those in [19] up to
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Figure 1. First eight eigenfunctions for the sinc-kernel calculated using the sampling theorem
based method. The functions are even/odd for even/odd index n. The eigenfunction corresponding
to index n has n zeros in the interval [−1, 1].

4, 2, 2 and 2 significant digits, respectively. A further analysis is necessary for deciding the
dimension of the matrix A for given accuracy requirements and the topic is beyond the scope
of this paper. The sharp fall off in the eigenvalues beyond n > 2c/π is evident. The sum
of the first ten eigenvalues for all the cases N = 51, . . . , 501, respectively is over 99% of the
value of the trace as determined by equation (29). The first eight eigenfunctions calculated
by interpolating the corresponding discrete eigenfunctions for the case N = 501 are shown
in figure 1. As is well known, one sees that the functions φn(x) are even/odd for even/odd
values of n. Also, φn(x) has n zeros in [−1, 1].

6. Eigenvalue problem for the sinc2-kernel

In this section we illustrate the general nature of our sampling theorem based method with an
example of the eigenvalue problem for the sinc2-kernel:

µnψn(x) =
∫ L

−L

dx ′ sinc2[B(x − x ′)]ψn(x). (30)

This problem has been studied before in the context of incoherent imaging systems [26 and
references therein] using iterative methods to obtain an orthogonal set of eigenfunctions over
[−L,L] and approximate expressions for the eigenvalues have been presented. We believe that
a direct method based on sampling theorem for general bandlimited kernels has not appeared
in the literature. We have used B instead of 2B in the argument of sinc2 in order to maintain
the same bandwidth as in the sinc example. Following the analysis parallel to that presented
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Table 2. Ten largest eigenvalues for the sinc2-kernel calculated using the sampling theorem based
method for c = 10. The calculations are performed with the dimension N of the truncated matrix A

taken equal to 51, 201 and 501, respectively. Values of (Bµn) are given in the table below.

n N = 51 N = 201 N = 501

0 8.8802 × 10−001 8.8802 × 10−001 8.8802 × 10−001

1 7.3441 × 10−001 7.3441 × 10−001 7.3441 × 10−001

2 5.8579 × 10−001 5.8579 × 10−001 5.8579 × 10−001

3 4.3822 × 10−001 4.3822 × 10−001 4.3822 × 10−001

4 2.9652 × 10−001 2.9652 × 10−001 2.9652 × 10−001

5 1.6363 × 10−001 1.6363 × 10−001 1.6363 × 10−001

6 6.1095 × 10−002 6.1097 × 10−002 6.1097 × 10−002

7 1.3420 × 10−002 1.3426 × 10−002 1.3426 × 10−002

8 1.8151 × 10−003 1.8132 × 10−003 1.8132 × 10−003

9 1.6746 × 10−003 1.6846 × 10−003 1.6848 × 10−003

in equations (10)–(12), it is easy to see that for the solution of (30), one needs to solve the
equivalent discrete eigenvalue problem for the infinite matrix A′ with elements defined by

A′
mk =

∫ L

−L

dx ′ sinc2(Bx ′ − m/2) sinc(2Bx ′ − k). (31)

The properties of the eigenfunctions ψn(x)will not be discussed here, as they have already
appeared in literature [26] and also since the purpose of this example is simply to illustrate
the application of the sampling theorem based method to kernels other than the sinc-kernel.
We however note that, the eigenfunctions ψn(x) do not enjoy the special properties of dual
orthogonality, as is the case with prolate spheroids. To calculate the trace of matrix A′, we
write the sampling expansion for the sinc2 function:

sinc2[B(x − x ′)] =
∞∑

m=−∞
sinc2(Bx ′ − m/2) sinc(2Bx − m). (32)

Using the special case x = x ′ of (32), we can write

tr(A′) =
∫ L

−L

dx

∞∑
m=−∞

sinc2(Bx − m/2) sinc(2Bx − m) = 2L. (33)

For numerical computations we have used the same values L = 1, c = 2πBL = 10 as in the
previous section. The matrix elements as defined in (31) were once again computed using a
Gaussian quadrature and the eigenvalue problem A′wn = µnwn was solved for the truncated
versions of matrix A′ having dimension N = 51, 101, 151, . . . , 501. The ten largest eigenvalues
for each of the three cases N = 51, 201, 501 are shown in table 2. We observe that for the cases
N = 301 and beyond, all the ten eigenvalues have stabilized to five significant digits. The sum
of the first ten eigenvalues for all the cases N = 51, . . . , 501 is over 99% of the value of trace as
determined by equation (33). The discrete eigenvectors wn corresponding to the case N = 501
are interpolated using the sampling theorem (1) and the first eight continuous eigenfunctions
are plotted in figure 2. The eigenfunctions are qualitatively similar to the sinc-kernel problem
and the eigenvalues are seen to fall off almost linearly with the order index n.

All the computations in sections 5 and 6 were performed using standard routines available
in the mathematical software MATLAB v. R12.
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Figure 2. First eight eigenfunctions for the sinc2-kernel calculated using the sampling theorem
based method. The functions are even/odd for even/odd index n. The eigenfunction corresponding
to index n has n zeros in the interval [−1, 1].

7. Conclusion

In summary, we have treated the eigenvalue problem for the sinc-kernel with a novel approach,
based on the Whittaker–Shannon sampling theorem. First, the eigenvalue problem (8) is
converted to an equivalent discrete eigenvalue problem for the infinite matrix A defined in
(12). It is shown that the eigenfunctions (prolate spheroidal wavefunctions) and the associated
eigenvalues may be computed without any reference to the prolate spheroidal differential
equation. The orthogonality and completeness properties of the eigenfunctions are also
proved using sampling identities. It is pointed out that the appearance of the sinc-function as
a kernel of the integral equation as well as the interpolation function in the sampling formula
is important for the dual orthogonality of prolate spheroidal functions over finite as well as
infinite intervals. The sampling theorem based method is illustrated with the computation of
eigenfunctions and eigenvalues for the sinc-kernel with Shannon number c = 10. The method
of calculating eigenfunctions and eigenvalues presented in this paper is applicable to general
bandlimited kernels as illustrated by the sinc2-kernel example.
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